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Abstract. Spectral mixture analysis and hyperspectral remote sensing are analytical and hardware tools

new to precision agriculture. They can allow detection and identification of various crop stresses and

other plant and canopy characteristics through analysis of their spectral signatures. One stressor in cotton,

the strawberry spider mite (Tetranychus turkestani U.N.), feeds on plants causing leaf puckering and

reddish discoloration in early stages of infestation and leaf drop later. To determine the feasibility of

detecting the damage caused by this pest at the field level, AVIRIS imagery was collected from USDA-

ARS cotton research fields at Shafter, CA on 4 dates in 1999. Additionally, cotton plants and soil were

imaged in situ in 10 nm increments from 450 to 1050 nm with a liquid-crystal tunable-filter camera

system. Mite-damaged areas on leaves, healthy leaves, tilled shaded soil, and tilled sunlit soil were chosen

as reference endmembers and used in a constrained linear spectral mixture analysis to unmix the AVIRIS

data producing fractional abundance maps. The procedure successfully distinguished between adjacent

mite-free and mite-infested cotton fields although shading due to sun angle differences between dates was

a complicating factor. The resulting healthy plant, soil, mite-damaged, and shade fraction maps showed

the distribution and relative abundance of these endmembers in the fields. These hardware and software

technologies can identify the position, spatial extent, and severity of crop stresses for use in precision

agriculture.
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Introduction

The strawberry spider mite causes serious damage to cotton in the San Joaquin
Valley in California. They feed on plants, causing leaf puckering and reddish dis-
coloration in early stages of infestation and leaf drop later (Anonymous, 1996).
Because of these leaf-color changes, and perhaps physiological changes not visible to
the naked eye, remote sensing and image processing offer the possibility of identi-
fying regions within fields that indicate spider mite damage. Typically, mite control is
achieved by spraying the entire field with pesticides after field scouting has identified
a threshold number of individuals. However, if infested areas in a field can be
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identified, pesticide applications could be targeted, reducing input costs and bene-
fiting the environment through reduction of applied pesticides.
Remote sensing represents one method for mapping the spatial distribution and

severity of anomalies, including damage caused by spider mites. Multispectral re-
mote sensing has been shown to be effective at relating reflectance to the incidence
of agronomic pests, including disease (Summy et al., 1997), weeds (Brown et al.,
1994), and mites (Fitzgerald et al., 1999a, 1999b; Peñuelas et al., 1995;) but due to
limited spectral coverage, multispectral remote sensing may not be able to uniquely
identify the damage-causing stressor. Hyperspectral remotely sensed data provide
dozens to hundreds of contiguous narrow spectral bands, forming spectral curves of
the scene components of interest. Analysis of the shapes of these spectra allow
discrimination of the scene components. The large amount of data in hyperspectral
imagery permits the application of advanced image analysis techniques designed to
extract unique data features from high-dimensional data sets and reduce complexity
to make the data more interpretable. One technique, spectral mixture analysis
(SMA), was used in this paper because it allows identification and quantification of
scene components of interest, is relatively simple conceptually, is not computa-
tionally intensive, and is readily available as part of commercial software packages.
Spectral mixture analysis has been used to process imagery from ecological and

landscape studies for a number of years and the details of the procedure are well
documented beginning with Adams and Smith (1986) and more recently in Okin
et al. (2001). One type of SMA, linear spectral unmixing, is based on the assumption
that each pixel is a physical mixture of multiple components (endmembers) and the
spectrum of this mixed pixel is a linear combination of the endmember reflectance
spectra (Tompkins et al., 1997). SMA also assumes that a small number of spectra
representing the endmembers can describe most of the spectral variation in a scene
and be used to ‘‘unmix’’ the pixels and determine the relative fractional abundance of
each endmember on a per-pixel basis. This approach could allow discrimination
of one plant stress from another through identification of unique spectral absorption
features or differences in the shapes of the spectral curves and quantify the amount
present in each pixel. Thus, the fractional abundance maps produced can indicate
both the spatial extent and severity of particular stresses. Abundance maps would
permit a farm manager or scout to locate precisely the identified stress in a field,
thereby providing for guided field scouting and precision application of appropriate
control measures such as pesticides or biological control agents.
Few papers have addressed the issue of detection or discrimination of canopy-level

features in agricultural crops with hyperspectral remote sensing (Estep and Davis,
2001; Gat et al., 1999; Gat et al., 2000; Green et al., 1998; Perry et al., 2000). A few
published papers have discussed field-scale soil properties (Palacios-Orueta and
Ustin, 1996; Whiting and Ustin, 2001). Some studies have addressed leaf-scale
measurements in agricultural crops and forests and others have measured single-
plant scale spectra and associated biophysical characteristics. Examples include
relating leaf reflectance to leaf water status (Bowman, 1989; Carter, 1991; Hunt and
Rock, 1989; Tian et al., 2001), changes in the red-edge due to stress conditions
(Curran et al., 1990; Railyan and Korobov, 1993), and imposition of various
nutrient-deficiency stresses (Masoni et al., 1996). Carter and Knapp (2001) reviewed
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the effects of various physical and biological stressors on the reflectance of various
species of leaves, mostly from trees.
The principal objective of this research was to determine whether hyperspectral

imagery that had been ‘‘unmixed’’ could accurately discriminate between a field of
healthy cotton and an adjacent field of mite-damaged cotton based on reference
endmembers in a spectral library collected from the field plots. Additionally, it was
expected that the SMA procedure would provide abundance fraction images deliv-
ering spatially explicit maps of mite damage severity useful within the framework of
precision agriculture.

Materials and methods

An experiment was established on two, 2.8 ha fields at the USDA-ARS research
station in Shafter, CA (35.5�N, 119.3�W, 120 m above sea level). Each field
(Figure 1) was planted to cotton (Gossypium hirsutum L. variety ‘‘Maxxa’’) on
May 4, 1999 (DOY 124). Both fields were irrigated with sub-surface drip irrigation,
which left the soil surface dry all season. Both were managed according to standard
cultural practices for cotton in the area except that one (Field 41) was sprayed once
with a wide spectrum pesticide about eight weeks after planting, virtually eliminating
beneficial insects and predatory mites, which normally keep spider mite populations
in check. The other (Field 42) was treated with appropriate pesticides several times
during the growing season to control spider mite infestations following standard
local practices.
Each field was divided into 20 sections for mite population counting, which was

performed weekly to monitor spatial and temporal distribution of the mites in each
field. Using published guidelines (Anonymous, 1996), 10 leaves within each section
were examined for presence or absence of mites. Normally, such a count would be

Figure 1. (a) High resolution (0.65 m) near-infrared image (850 nm) of cotton research Fields 41 and 42

acquired on 25 Aug 1999. In Field 41, mites were allowed to damage the crop while in Field 42 mites were

controlled. Arrows point to scene features. Fields 41 and 42 each had dimensions of approximately

100 m · 300 m. The smaller field to the right of Fields 41 and 42 was not part of this experiment but is

shown so that the surrounding roads could be included in the analysis. (b) AVIRIS image (band 41,

845 nm, 18 m pixel resolution) of the same fields acquired 28 Aug 1999.
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made for an entire field, but each section was tallied in order to gain an under-
standing of the spatial distribution of the mites within the two fields.
A digital camera system consisting of visible and near-infrared ‘‘Varispec’’ liquid-

crystal tunable-filters (LCTF) from Cambridge Research Instrumentation, Inc.,
Woburn, MA, USA and a digital camera from PixelVision, Inc., Tigard, OR, USA
(Pluto model, 14-bit, cooled, 512 · 512 pixels) was mounted aboard a platform with
the operator on a high-clearance vehicle capable of entering cotton fields. The liquid-
crystal filters were tuned electronically at 9.5 nm increments from 400 to 1050 nm
allowing narrow-band wavelengths of light to reach the camera. The camera shutter
and filter were synchronized so that one image was acquired for each waveband.
Each image set was acquired in less than 3 min, within 1 h of solar noon, and stored
digitally on a laptop computer. At a height of about 3 m above the canopy, pixel
resolution was about 1 mm. Scene components included healthy leaves, mite-infested
leaves, sunlit soil, open cotton boll, dead leaves, and canopy shade. Images were
corrected to reflectance using a 99% ‘‘Spectralon’’ calibration panel (Labsphere,
North Sutton, NH, USA), which was placed in the field of view before and after
image acquisition.
Imagery from NASA’s Airborne Visible Infrared Imaging Spectrometer (AVIRIS)

was acquired for the research fields on four separate dates in 1999. Flight dates, day
of year (DOY), local times, and solar zenith angle are shown in Table 1. The
hyperspectral data from AVIRIS was composed of 224 images acquired contigu-
ously from 400 to 2500 nm in 10 nmbands. The AVIRIS data sets were atmo-
spherically corrected and converted to reflectance using ATREM and EFFORT
algorithms. Ground pixel resolution was 18 m.
Images acquired from the LCTF system were used to build a spectral library

containing representative endmembers, including sunlit healthy leaves (H), sunlit
mite-damaged leaves (M), tilled sunlit soil (S), tilled shaded soil (Sh), opened cotton
boll (CB), and dead leaf (D) (Figure 2). Other spectra in the library not shown here
included leaf shade on dry soil (LSS), leaf shaded by leaves (LSL), and sunlit soil
within the canopy (SSC). Reference spectra were constructed by selecting repre-
sentative pixels on leaves and soil. The number of pixels selected from the areas to
create each endmember spectrum was: H, 900; M,16; S, 5000; Sh, 100; CB, 9; and
D, 27. The SSC and LSS spectra collected within the canopy showed a red edge effect
due to the scatter of light from the surrounding leaves, so S and Sh were selected
from a separate LCTF image cube of tilled soil located outside the plant canopy.
This gave a ‘‘purer’’ shade component without mixing with plant spectral features.

Table 1. AVIRIS overflight dates, day of year (DOY), local times (Pacific Daylight Time), and solar

zenith angles

Flight date DOY Local time Solar zenith

13 Jun 1999 164 11:29 am 22.7�
28 Aug 1999 240 12.09 pm 27.9�
1 Sep 1999 244 10:07 am 49.3�
24 Sep 1999 267 11:43 am 38.9�
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This ground-based approach allowed selection of more spectrally ‘‘pure’’ or non-
mixed endmember spectra than could be selected from the mixed pixels in the
AVIRIS imagery (Gillespie et al., 1990). Selection of the ‘‘purest’’ or representative
endmember spectra is a requirement for proper spectral unmixing since these spectra
are used as references to derive fractional abundances.
The AVIRIS image cubes were masked to include only the fields of interest and

then spectrally resampled to match the wavelengths of the more restricted LCTF
spectral library after noisy bands below about 450 nm and above 1000 nm were
removed. This spectral resampling yielded a total of 57 wavebands in 9.5 nm
increments from 459 to 1002 nm. Spectral mixture analysis was then performed on
the four AVIRIS images using the built-in linear spectral unmixing routine in the
ENVI software package (Research Systems, Inc., Boulder, CO). Within ENVI,
analysis parameters were set to constrained unmixing with a weight of 10, which
constrained the fractions within each pixel to sum to unity.
The abundance fractions represent the relative area occupied by an endmember

within a pixel. To have realistic values they need to fall between 0 and 1 and the
totals sum to unity. If the resulting fractions are highly negative or much greater
than unity then the number and type of endmembers were not chosen properly.
Values slightly negative or greater than unity are allowed to account for noise in
the data. Pixels should have a low RMSE near the magnitude of instrument noise
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Figure 2. Six spectral library endmembers derived from scene components in the ground-based liquid-

crystal tunable-filter camera imagery. The error bars represent ±1 standard error. These are shown for the

mite-damage curve only because standard errors for the other curves were too small to show clearly.
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(Anonymous, 2000; Roberts et al., 1998; Smith et al., 1990), typically below
0.025.
One feature of simple mixture modeling is that it assumes the same set of end-

members are present in all pixels, which is not reasonable since the composition of
scene components will vary across an image. For example, a pixel can contain a
mixture of canopy and shade or canopy, mite-damaged leaves, and shade. To vary
the number and type of endmembers on a per-pixel basis, a simplified version of the
multiple endmember spectral mixture analysis (MESMA) routine presented by
Roberts et al. (1998) was utilized to assign the proper number and types of end-
members to each pixel. The criteria for this MESMA analysis were: Acceptable
fraction abundances were set to range from )0.01 to 1.01, RMSE with no constraints
(all RMSE values valid), and there was no residual criterion since this has not been
shown to be a significant selector for endmembers (D.A. Roberts, pers. comm.,
2002). Roberts et al. (1998) selected final pixel endmember combinations from 2 to 3
endmember models. This present study included 2–4 endmember models for each
pixel. If more than one model met the selection criteria for any pixel, the one with the
lowest RMSE was selected as the final model.
The MESMA model uses a large library of hundreds of endmembers and the

selection of realistic combinations of endmembers for each pixel includes
optimization of model selection, reduction of the number of potential models from
hundreds to dozens, and an assessment of spatial context for the models (Roberts
et al., 1998). In this study, each pixel was modeled from a library of only nine
endmembers: H, M, S, Sh, LSS, LSL, SSC, D, and CB. Restriction of the pool of
potential endmembers greatly decreased the complexity of the modeling process. The
danger is that not all endmembers present in the scene will be found in the library but
given a priori knowledge of the field this possibility can be reduced or eliminated.
Note that the abundance fractions of the final selected endmember sets summed to
between 0.99 and 1.0 and the MESMA routine was constrained to include Sh in each
pixel, reducing the number of possible endmember combinations and further sim-
plifying the procedure.
The linear mixture model takes the form, Eq. (1):

P0
ik ¼

XN
k¼1

f ki � Pkk þ eik and
XN
k¼1

f ki ¼ 1; ð1Þ

where P0
ik is the spectral mixture at location i modeled as the sum of N reference

endmembers, Pkk, with each weighted by the fraction, f ki. The unmodeled portion is
the residual term, eik at wavelength k and the endmember fractions were constrained
to sum to 1. The error associated with the model fit was assessed through the root
mean square error (RMSE), Eq. (2):

RMSE
Xk
k¼1

ðeikÞ2
�

N

 !1=2

: ð2Þ

Yield monitor data were collected using an Agriplan 600 cotton yield monitor
(Stow, MA, USA) with a Rockwell GPS unit and CSI differential receiver and are
presented here as a surrogate for mite damage (discussed below). The yield data
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were imported to the ENVI software to create an image map, masked, resampled,
and registered to the AVIRIS data to permit pixel to pixel comparisons for
regression analysis.

Results

High resolution, near-infrared imagery collected with a multispectral system
(Fitzgerald et al., 1999b) showed a dark mite-damaged canopy in Field 41 while the
vigorous canopy in Field 42 was bright (Figure 1(a)). Because more energy is
reflected from healthy than unhealthy plants in the near-infrared, Field 42 appeared
brighter than Field 41. Although ground pixel size was 18 m for the AVIRIS images
(Figure 1(b)), there were noticeable light and dark patterns within each field, cor-
responding to those seen in Figure 1(a).
The two fields were managed identically except for mite control and the only other

factor that could have differentially influenced the fields was soil variation. To test
whether soil was a factor contributing to yield, the AVIRIS imagery from 13 Jun was
selected to represent soil reflectance. This imagery was acquired 40 days after
planting and ground cover was below 10%, thus it predominantly represented soil
variation. Neither a regression of NDVI derived from the AVIRIS data from 13 Jun
versus yield (not shown) nor S fraction from 13 Jun versus yield showed any rela-
tionships (r2 ¼ 0). Thus, soil was not a major factor in determining yield in these
fields and it was determined the yield map could be used as a spatially explicit
surrogate for mite damage severity. Yields in Fields 41 and 42 were 1338 and
3310 kg/ha, respectively. A t-test showed these were significantly different at
a ¼ 0:05 (P < 0:0001).
The fields were statistically significantly different in terms of mite counts (Field 41

= 4.9 and Field 42 = 3.1 mites/10 leaves) as determined by a t-test at a = 0.05
(P ¼ 0:0002). Figure 3 shows yield versus mean mite counts for 21 Jul and 27 Jul.
The r2 value was 0.49 and the figure shows that mite populations at that time had a
strong effect on final yield.
Five of the nine endmembers included in the spectral library were not selected in

the final unmixed images (CB, D, LSL, LSS, SSC) either because they resulted in
negative fractions or a few pixels met the criteria but these were located along field
edges and mean fractions were less than 0.01. The combination of endmembers that
consistently had the lowest RMSE, summed to unity, and correctly located known
areas of mite-damaged plants, healthy plants, and soil was the combination that
included S, M, H, and Sh, except for the 13 Jun image, which did not include M
because mites were not present. Whenever Sh was excluded from the unmixing
analysis, the sum of fractions ranged from 0.60 to 0.92. When Sh was included, all
pixel abundances summed from 0.99 to 1.00.
Pixels forming Regions of Interest (ROI) were visually selected for Field 41

(mite-damaged), Field 42 (healthy canopy), and the dirt roads around the fields.
Table 2a presents the numerical information for these regions and Figures 4 and 5
show the spatial distribution and intensity of these endmembers. To correct for
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shade, Eq. (3) was adapted from Adams et al. (1993) to normalize the effect of the
shade fraction on M, H, and S fractions (Table 2b).

Ms ¼ M=ð1� ShÞ; ð3Þ

where Ms = mite fraction normalized for shade, M= mite fraction, and Sh = shade
fraction.
Equation (3) partly accounts for the effects of shaded leaves (Adams, et al., 1995)

and improves comparisons of imagery acquired on different dates. Comparing M
fractions from 28 Aug and 1 Sep without shade normalization shows values of 0.09
and 0.01, respectively, a 9:1 ratio (Table 2a). With shade correction this changes to
0.20 and 0.04, respectively, a 5:1 ratio (Table 2b). Since these images were acquired
only 4 days apart they would be expected to have similar fractions but these were
confounded by shade (discussed below). Since shade is not a material component in
an image, the fractions should be normalized for shade to give more accurate
abundances (Tompkins et al., 1997).
The fraction images in Figure 4 show changes in the canopy throughout the

season. On 13 Jun, 40 days after planting, ground cover in the fields was sparse as
shown by the dark H pixels and brighter S pixels. Early season growth was most
vigorous in the west side of the fields (Figures 4 and 5). Mean fractions on 13 Jun
were almost identical as would be expected before mite pressures changed the growth
characteristics of the two fields (Table 2a). Based on ground sampling in June, mean
field mite counts were less than 1 mite per leaf and thus, the unmixing procedure
correctly excluded the M endmember from the 13 Jun data.
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Table 2b. Fractional abundance means from Table 2a normalized for shade fraction

13 Jun 28 Aug 1 Sep 24 Sep

Field 41

Soil 0.938 0.027 0 0.077

Mite 0 0.205 0.040 0.125

Healthy 0.062 0.768 0.960 0.798

Field 42

Soil 0.934 0 0 0

Mite 0 0 0 0.048

Healthy 0.066 1 1 0.952

Road

Soil 0.999 0.907 0.903 0.892

Mite 0 0 0 0

Healthy 0 0.093 0.095 0.108

The RMSE values are the same as those in Table 2a and are not repeated here.

Figure 4. Fractional abundance image maps produced from spectral unmixing of four AVIRIS image

cubes. Highest to lowest values are represented by brightest to darkest pixels. Black pixels have zero value.

There was no abundance map for M on 13 Jun 1999 because all pixel values were zero.
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The 28 Aug and 1 Sep images were acquired about six weeks after mite popula-
tions were first detected on the ground. Mite damage locations are evident and
consistent for the two dates even though the shade-corrected mean fractions varied
from 0.04 to 0.21 in Field 41 between the two dates (Table 2b). Importantly, the
procedure did not generate false positives; no pixels with mite damage were identified
in Field 42 for these dates. The S fraction was always greatest for the Road region
and equal to zero in Field 42 once full canopy was established. The roads around the
fields are clearly identified in Figures 4 and 5. The H abundances were greater for
Field 42 than 41 for these dates.
By 24 Sep, a few weeks before harvest, senescence became a dominant feature.

Some pixels are darker for H in Field 42 than the earlier dates (Figure 4) and the
spatial patterns of bright pixels for the M images in Field 41 (Figure 4) and reddish
pixels (Figure 5) changed from previous dates. When cotton senesces, it tends to
form red spots on its leaves. The spectral signature from reddish senescent vegetation
undoubtedly resembled that of M (Figure 2), although this was not measured. Late
season regrowth of cotton is evident on the west side of Field 41 on 24 Sep by the
bright pixels in the H image (Figure 4) and bright green pixels in Figure 5. This was
noted on the ground as plants greater than 2 m tall.
Pixels in the Sh fraction images were brightest where there was more canopy

variability along the edges of the fields and in the mite-infested and sparse canopy
regions where there was a mix of canopy and soil (Figure 4). The mean Sh fractions

Figure 5. 3-band color composites normalized for shade of mite (red), healthy (green), and soil/road (blue)

fraction images (from Figure 4). Red indicates mite-damaged areas that would assist a farmer or scout in

locating them. Other ground features are indicated based on known conditions at the times of overflights.
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were always greatest in Field 41 and lowest in the Road ROI within a given date
(Table 2a).
WhenMs from 28 Aug was plotted against yield (or mite severity) an r2 of 0.60 was

obtained (Figure 6(a)). There was no relationship when the same comparison was
made for 1 Sep data (r2 = 0.02).

Discussion

Selecting a set of endmembers from a larger library based on selection criteria
constraints such as having values between 0 and 1 and requiring all endmembers in a
pixel to sum to unity provides a more realistic solution than assuming all pixels have
the same endmembers. A few (2-4) endmembers are sufficient to describe the com-
position of each pixel and when selected from a larger library of endmembers can
describe the variation across a scene. The result here was abundance images that
matched known ground conditions. This procedure therefore incorporated both
spectral and spatial variability. The comparison across four dates allowed a measure
of temporal change to be incorporated into the analysis, which is critical for agri-
culture. The resulting images showed both consistent features and explainable
changes in the crop (Figures 4 and 5), were able to distinguish between a mite-
infested and mite-controlled field, and map the distribution and relative severity of
mite damage.
Areas of severe mite damage were located consistently in the west (left) side of

Field 41 on 28 Aug and 1 Sep, and Field 42 showed healthy canopy (Figures 4
and 5), which agrees with mite counts (Figure 3) and severity (Figure 6(a)).

Figure 6. Pixel values from shade-normalized mite fractions (Ms) versus yield (or mite severity) registered

to AVIRIS imagery. Yield monitor data were used as a surrogate for mite severity since this was the only

factor influencing yield (see text). In (a), as mite fraction increased, the yield declined and mite severity

increased. Figure 6b shows the same relationship but it is not statistically significant.
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However, because the solar zenith angles between dates were different, the abun-
dance fractions were not the same (Table 2a) and the relation between mite severity
and shade-corrected mite fraction (Ms) was basically non-existent on 1 Sep (Fig-
ure 6(b)). At best, mite-damaged leaves were less visible due to heavier shading on 1
Sep compared to 28 Aug and at worst, they were hidden underneath the upper
canopy on 1 Sep. Sabol et al. (1992) noted that as shade fraction increases, the
detection threshold for other endmembers is reduced. Despite the lack of a quanti-
tative relationship of Ms and mite severity for 1 Sep, the method was successful at a
qualitative detection of damage in the same locations in Field 41 for both 28 Aug
and 1 Sep (Figures 4 and 5). It appears that it can be difficult to compare abundance
fractions across dates if the solar zenith angle is too great. This is likely due to non-
linear effects of plants shadowing plants (Roberts et al., 1998).
Figure 5 integrates the fraction images in Figure 4 and corrects for shade effects. A

map like this could be used as diagnostic tools for a farmer or scout either in a digital
or paper form to locate mite damage. If loaded into a global-positioning-system-
equipped handheld computer or downloaded into a tractor, this could guide per-
sonnel and machinery to the affected locations for appropriate treatment.
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Peñuelas, J., Filella, I., Lloret, P., Munoz, F. and Vilajeliu, M. 1995. Reflectance assessment of mite effects

on apple trees. International Journal of Remote Sensing 16, 2727–2733.

Perry, E. M., Gardner, M., Tagestad, J., Roberts, D., Cassady, P., Smith, J. and Nichols, D. 2000. Effects

of image resolution and uncertainties on reflectance-derived crop stress indicators. In: Summaries of the

9th JPL Airborne Earth Science Workshop, edited by R. O. Green (Jet Propulsion Laboratory, Pasa-

dena, CA, USA), unpaginated CD.

Railyan, V.Ya. and Korobov, R. M. 1993. Red edge structure of canopy reflectance spectra of triticale.

Remote Sensing of Environment 46, 173–182.

Roberts, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G. and Green, R. O. 1998. Mapping

Chaparral in the Santa Monica mountains using multiple endmember spectral mixture models. Remote

Sensing of Environment 65, 267–279.

Sabol, D. E., Adams, J. B. and Smith, M. O. 1992. Quantitative subpixel spectral detection of targets in

multispectral images. Journal of Geophysical Research 97, 2659–2672.

Smith, M. O., Ustin, S. L., Adams, J. B. and Gillespie, A. R. 1990. Vegetation in deserts: I. A regional

measure of abundance from multispectral images. Remote Sensing of Environment 31, 1–26.

FITZGERALD ET AL.288



Summy, K. R., Everitt, J. H., Escobar, D. E., Alaniz, M. A. and Davis, M. R. 1997. Use of airborne digital

video imagery to monitor damage caused by two honeydew-excreting insects on cotton. In: Proceedings

of the 16th Biennial Workshop on Color Photography and Videography in Resource Assessment, 29 Apr.–

1 May, 1997, Weslaco, TX, pp. 238–244.

Tian, Q., Tong, Q., Pu, R., Guo, X. and Zhao, C. 2001. Spectroscopic determination of wheat water status

using 1650–1850 nm spectral absorption features. International Journal of Remote Sensing 22, 2329–

2338.

Tompkins, S., Mustard, J. F., Pieters, C. M. and Forsyth, D. W. 1997. Optimization of endmembers for

spectral mixture analysis. Remote Sensing of Environment 59, 472–489.

Whiting, M. L. and Ustin, S. L. 2001. Correlating AVIRIS imagery to field sampling and spectrometer

measurements for inorganic soil carbon. In: Summaries of the 10th JPL Airborne Earth Science

Workshop, edited by R. O. Green (Jet Propulsion Laboratory, Pasadena, CA, USA), pp. 455–461.

HYPERSPECTRAL IMAGERY AND SPECTRAL MIXTURE ANALYSIS 289


